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Abstract—Payload manipulation with aerial robots has been

an active research area for many years. Recent approaches

have sought to plan, control, and execute maneuvers with

large, yet deliberate, load swings for more agile, energy-optimal

maneuvering. Unfortunately, the system’s nonlinear dynamics

make executing such trajectories a significant challenge and

experimental demonstrations thus far have relied completely

on a motion capture system and non-negligible simplifications

like restriction of the system to a two-dimensional workspace

or closing of the control loop on the quadrotor, instead of the

payload. In this work, we observe the payload using a downward-

facing camera and estimate its state relative to the quadrotor

using an Extended Kalman Filter. We demonstrate closed-loop

payload control in the full three-dimensional workspace, with

the planning, estimation, and control pipeline implemented on

an onboard processor. We show control of load swings up to

53

o

from the vertical axis. To the best of our knowledge, this

represents the first realization of closed-loop control of agile

slung-load maneuvers and the largest achieved payload angle.

Index Terms—Aerial Systems: Mechanics and Control, Motion

Control

I. INTRODUCTION

A

UTONOMOUS aerial manipulation can aid in many
tasks, such as construction, disaster response, and pack-

age delivery. One mechanism for interaction is through a
rigidly-connected gripper [1]. However, rigidly attached ob-
jects can significantly alter the vehicle’s maneuverability and
the mostly small size of the gripper requires the robot to
approach the ground for pick-up. Instead, we transport objects
via a cable suspension, allowing the vehicle to retain its agility.

Past work for slung-load transport has largely focused on
elimination of the load swing while maintaining fast vehicular
movement [2], [3], [4], [5], [6], [7]. This mode of operation is
safe, but conservative and sub-optimal, as the system’s natural
dynamics, the swinging motions, are suppressed. In contrast,
skilled helicopter pilots achieve rapid object transport by
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Fig. 1: Snapshots of a quadrotor with suspended payload.

allowing payload swings and anticipating their effects3. Lever-
aging the system dynamics like this is not only more energy
optimal, but also allows maneuvering around obstacles such
as windows shorter than the suspension-cable’s length [8].
However, control at configurations where the payload is swung
far from the vertical position is challenging. Thus, previous
controllers have constrained the system to a planar workspace,
completely relied on an external motion capture system, or
closed the control loop on the quadrotor, rather than payload
position. In this work, we demonstrate closed-loop payload
control of aggressive maneuvers and take a significant step
towards complete onboard control by detecting the payload’s
state relative to the quadrotor with a downward-facing camera.

A. Related Work

One approach for aerial slung-load manipulation is to di-
rectly optimize system inputs [5], [6], [9]. However, in this
work, we will decouple the trajectory generation and control
problems. While generating dynamically feasible, aggressive
trajectories has already been successfully accomplished using
nonlinear optimization [10] or Quadratic Program variants [8],
[11], tracking these trajectories is very challenging. Most
previous controllers can only stabilize the payload to the
vertical position [2], [3], [4], limiting the system to swing-
free transport. Only two approaches have addressed executing
large load swings. The first explicitly finds the quadrotor
trajectory that actuates the desired payload motions and closes
the control loop on the robot [10], [11]. However, this is
not robust to unmodeled slung-load disturbances, and a more
desirable option is to close the control loop on the payload
using a geometric controller [12]. Unfortunately, while this

3https://youtu.be/sMVI os9ioM
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controller theoretically guarantees control of arbitrary system
orientations with almost global stability, it has not been fully
experimentally realized. Previous results restrict the system
to a two-dimensional plane [8], [13] or only demonstrate
stabilization without validation of agile motions [14].

Earlier implementations have also relied fully on a motion
capture system [8], [10], [13], [14]. These measurements do
not incorporate information about the system’s dynamics and
can be especially noisy for small, fast-moving objects like
a suspended payload. Filtering onboard sensor measurements
with a known dynamic model is thus a more desirable option.
This has been done for small payload oscillations about the
vertical configuration using force sensors [15] and cameras [3],
but has not been demonstrated with large load swings.

B. Contribution

The main contribution of this work is a vision-based,
closed-loop geometric controller that enables the control of a
suspended payload by a quadrotor even at large displacements.
Our estimation and control algorithms rely on state repre-
sentations that do not suffer from singularities. Furthermore,
these algorithms can be run on a low-cost processor. We
show that our system can execute aggressive maneuvers and
offers notable performance gain over closing the control loop
on the quadrotor (i.e. open-loop payload control). While the
aggressive control of quadrotors has been well-addressed, this
is the first demonstration of closed-loop control of suspended
payloads with load swings exceeding 50

o.
We note that the focus of this work is on estimation of the

payload state relative to the robot. Others have shown that on-
board cameras can be used for quadrotor state estimation [16],
[17]. In this work, we use a motion capture system to measure
the quadrotor position, velocity, and yaw, but this can naturally
be replaced with existing quadrotor estimation techniques.

Sections II–III will present the dynamic model and control
design. Section IV and V will describe the estimator and
trajectory generator. Section VI will present experimental
results and finally, Section VII will conclude the paper.

II. MODELING

We model the payload as a point-mass and the cable as
a massless rod. Let I be an inertial coordinate frame, with
axes {eI

x

, eI
y

, eI
z

}, B be a body frame with axes e

B
⇤ , and C be

a camera frame with axes e

C
⇤ . Fig. 2 illustrates these frames

and Table I lists relevant variables. The state and input are:

x =

⇥
x

>
L

˙

x

>
L

p

>
˙

p

>
R ⌦

>⇤> ,

u =

⇥
f M

>⇤> ,

respectively. p and R are coordinate-free configuration repre-
sentations that avoid parameterization singularities. The sys-
tem’s kinetic and potential energy is:

T =

1
2 (mQ

+m
L

)ẋ

L

· ẋ
L

�m
Q

l ẋ
L

· ṗ
+

1
2 m

Q

l2ṗ · ṗ+

1
2 ⌦ I ⌦,

U =(m
Q

+m
L

)g x

L

· eI
z

�m
Q

gl p · e3,

TABLE I: Variables of the quadrotor-with-load system.

I, B, C Inertial, body, camera frame
l, d 2 R Cable length, distance from camera to load
m

Q

,m
L

; g 2 R Mass of quad, load; gravity constant
I 2 R3,3 Inertia tensor of quad, in B
f 2 R, M 2 R3 Input thrust magnitude, moment in B
x

Q

,x
L

2 R3 Position vector of quad, load, in I
p 2 S2 Unit vector from quad to load, in I
R 2 SO(3), 2 R Rotation from B to I, yaw angle of quad
⌦ 2 R3 Angular velocity of quad, in B

respectively. The virtual work of the system is given by:

�W = fRe

I
z

· (�x
L

� l�p) +M · (R>�R).

The variation �x
L

exists in R3, however, the other variational
terms must be defined on their respective manifolds:

�p =

ˆ⇠p 2 TS2, ⇠ 2 R3, where ⇠ · p = 0,

�R = R

ˆ⌘ 2 TSO(3),⌘ 2 R3.

The hat map, ˆ·, returns the skew-symmetric matrix such that
ˆ

xy = x ⇥ y. � ˙x
L

, �ṗ, �⌦ can be found by differentiation.
Using these values in the Lagrange d’Alembert principle:

�S =

Z
t2

t1

(�W + �T � �U)dt = 0,

and integrating by parts gives the system dynamics:
d

dt

x

L

=

˙

x

L

,

(m
Q

+m
L

)(

¨

x

L

+geI
z

) =

�
p · fRe

I
z

�m
Q

l ( ˙p · ˙p)
�
p,

d

dt

p =

˙

p,

m
Q

l (¨p+ (

˙

p · ˙p)p) = p⇥
�
p⇥ fRe

I
z

�
,

˙

R = R

ˆ

⌦,

˙

⌦ = I-1
(M�⌦⇥ I ⌦) .

Details of this calculation can be found in [12].
A key observation is that the system is differentially

flat [18], that is, all state and input variables can be expressed
as nonlinear equations of a set of flat variables and their
derivatives. In this case, the flat variables are [12]:

x

f

=

⇥
x

>
L

 
⇤>

.

To see this, begin with the Newton-Euler equation:

�Tp = m
L

(ẍ

L

+ geI
z

), (1)

Fig. 2: The quadrotor, payload, and onboard camera with the
inertial, body, and camera frames.
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where T represents the magnitude of the cable tension. Then:

p = � (ẍ

L

+ geI
z

)

kẍ
L

+ geI
z

k2
, (2)

ṗ can be found through differentiation of Eq. 2. The quadro-
tor’s position and higher derivatives can then be found using:

x

Q

= x

L

� lp. (3)

The quadrotor is a differentially-flat system with flat variables⇥
x

>
Q

 
⇤> [19], so the rotational states and input can be

derived. The highest derivatives of x

L

,  needed to recover
x and u are x

(6)
L

, ¨ , respectively. For the remainder of this
work, assume  is constant. Furthermore, assume the cable
remains taut (i.e. T > 0). From Eq. 1, this is ensured for
kẍ

L

+ geI
z

k2 > 0, which we will guarantee during planning.

III. CONTROL

Crucial to the system is a controller that can track aggressive
trajectories. Note state variables are expressed in frames listed
in Table I. Subscripts des will denote values planned by the
trajectory generator, while c will denote commanded values
calculated within the controller.

Differential flatness guarantees that any six-times differ-
entiable trajectory x

L,des

can be mapped to dynamically
feasible states and inputs, x

des

and u

des

. This motivates a
trajectory generator that directly optimizes x

L,des

, as shown in
Section V, and a hierarchical controller, pictured in Fig. 3. The
desired trajectory is passed to an outermost payload position
controller, which determines a desired payload orientation
and angular velocity. This is tracked by a payload attitude
controller, which calculates a desired quadrotor orientation,
angular velocity, and thrust vector. The innermost quadrotor
attitude controller calculates inputs f,M. To execute large
load swings, the controller must not depend on local lineariza-
tions or be defined by attitude parameterizations that contain
singularities. The geometric controller from [12], described
below, uniquely displays these properties.

The quadrotor attitude controller is defined with:

M =� k

R

e

R

� k⌦e⌦

+⌦⇥ I⌦� I
⇣
ˆ

⌦⇥R

>
R

c

⌦c �R

>
R

c

˙

⌦

c

⌘
,

with error functions:

e

R

=

1
2

�
R

>
c

R�R

>
R

c

�_
, e⌦ = ⌦�R

>
R

c

⌦

c

,

where (·)_ is the inverse of the hat map and k

R

,k⌦ are
diagonal gain matrices. Unlike a linearized controller, the
error functions are defined on the manifold TSO(3). For
positive-definite gain matrices and initial conditions where
the angle-axis rotation from R to R

c

has angle less than
180o, the closed-loop quadrotor attitude error dynamics are
exponentially stable about (e

R

, e⌦) = 0 [12], [20].
R

c

,⌦
c

, are obtained from the payload attitude controller:

F =m
Q

l
�
�k

p

e

p

� k
ṗ

e

ṗ

+

�
p · (p

c

⇥ ˙

p

c

)

�
(p⇥ ˙

p)

+ (p

c
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p

c

)⇥ p
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� (p

c
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Fig. 3: Controller structure and sensor feedback.

F is defined with error functions:

e

p

=

ˆ

p

2
p

c

, e

ṗ

= ṗ� (p

c

⇥ ˙

p

c

)⇥ p.

Again, e
p

, e
ṗ

are defined directly on the manifold TS2. From
Eq. 4, the thrust input can be found as:

f = F ·Re

I
z

.

The commanded orientation is found as:

R

c

=

h
b3c⇥c1c

kb3c⇥c1ck2
⇥ b3c

b3c⇥c1c
kb3c⇥c1ck2

b3c

i
, ˆ⌦

c

= R>
c

˙R
c

,

(5)

where:

b3c =
F

kFk2
, c1c =

⇥
cos( ) sin( ) 0

⇤>
.

˙

R

c

and ˙

⌦

c

can be found by differentiating Eq. 5. For positive
gains k

p

, k
ṗ

and initial angles less than 180

o between p and
p

c

, the state (e

p

, e
ṗ

, e
R

, e⌦) = 0 is an exponentially stable
equilibrium of the closed-loop error dynamics [12].

Finally, the payload position controller is:

A =(m
Q

+m
L

)

�
� k

x

e

x

L

� k

v

e

ẋ

L

� k

i

�
Z
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L

dt
�

+ (m
Q

+m
L

)(

¨

x

L

+ geI
z

) +m
Q

l( ˙p · ˙p)p,

where k

x

,k
v

,k
i

are diagonal gain matrices,
e

x

L

= x

L

� x

L,des

, and e

ẋ

L

=

˙

x

L

� ˙

x

L,des

. This defines a
commanded payload orientation:

p

c

= � A

kAk2
.

ṗ

c

can again be found through direct differentiation. For
positive-definite k

x

,k
v

,k
i

and initial payload and quadrotor
attitude errors satisfying the previously stated bounds, the
complete closed-loop error dynamics are exponentially attrac-
tive about (e

x

, e
y

, e
p

, e
ṗ

, e
R

, e⌦) = 0 [12].
The controller is defined in a coordinate-free manner, does

not require linearization of the system dynamics, and is
exponentially attractive in almost all of R3 ⇥ TSO(3)⇥ TS2,
and thus well-suited to track aggressive trajectories.

IV. PAYLOAD ESTIMATION

The controller requires accurate payload state measure-
ments. We detect the load using a downward-facing camera
and filter measurements using an Extended Kalman Filter
(EKF), yielding high-frequency, dynamics-informed estimates.
Variables, unless otherwise specified, are stated in Table I.

Fig. 3 illustrates sensor feedback for each control loop. Our
robot is equipped with a downward-facing fisheye lens camera
and an Inertial Measurement Unit (IMU). We obtain the
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Fig. 4: Flow diagram of the payload estimation pipeline.

quadrotor’s roll, pitch, and ⌦ from filtered IMU measurements
from native software on the AscTec Hummingbird4. Because
the yaw  is not observable at hover, we obtain  from
a Vicon5 motion capture system. For the payload attitude
control loop, we design an EKF to fuse IMU and Vicon
yaw measurements with images from the onboard camera
to estimate p, ṗ. Finally, we combine these estimates with
Vicon measurements of x

Q

, ẋ
Q

using Eq. 3 to implement the
payload position control loop. In future work, our method can
be fused with many existing visual or visual-inertial quadrotor
estimation techniques. For the quadrotor attitude control loop,
we use only IMU and Vicon yaw measurements.

This section will focus on the estimation of p and ˙

p. Fig. 4
shows the pipeline, with each step described below.

A. Detector

We detect the payload via an attached black and white
circular tag (Fig. 5a). We obtain the tag’s pixel position, x

u

=

[u, v]>, in each image from an open-source detector [21]. This
system has sub-pixel precision, is robust to variable lighting
conditions, and requires relatively little processing time

B. Camera Model

We model the camera with an omnidirectional model [22].
An affine transformation between the tag center in pixel
coordinates, x

u

= [u, v]>, and adjusted pixel coordinates,
x

u

0
= [u0, v0]>, accounting for lens-sensor misalignments. The

vector from the camera to payload, in the camera frame, is:

n

C
=

2

4
n
x

n
y

n
z

3

5 ⇡ �

2

4
u0

v0

f(u0, v0)

3

5 ,

where the factor � accounts for the scale ambiguity. The
imaging function f(u0, v0) is approximated with a Taylor series
expansion. Assuming the lens is rotationally symmetric, we
define ⇢ :

=

p
u02

+ v02 and express the Taylor series as:

f(u0, v0) = f(⇢) = a0 + a1⇢+ a2⇢
2
+ . . .+ a

N

⇢N , (6)

where N is tuned. The affine transformation and a0, . . . , aN
are found during calibration. This allows us to obtain n

C .

C. Cable Length Constraint

From Fig. 2, we see under the cable-taut assumption that:

x

B
L

= l pB
= x

B
C

+ d R

B
C n

C . (7)

x

B
L

is payload’s position and x

B
C is the camera’s position, both

in the body frame. RB
C

is the camera-to-body-frame rotation
matrix. Also, note that xB

C is known. We formulate:

l =
��
x

B
C

+ d n

B�� ,

4www.asctec.de
5www.vicon.com

and solve for d. We select the solution corresponding to the
load oriented below the quadrotor. We then use Eq. 7 to
find x

B
L

, the position of the payload relative to the quadrotor.

D. Model-based Estimator

For estimation, we consider a system with state:

X =

⇥
p

>
ṗ

>⇤> ,

where p, ṗ are in I, with input:

U =

⇥
f R ⌦

>⇤> .

Here, f is calculated by the controller while R and ⌦ are
obtained from IMU and Vicon yaw measurements.

We model the process noise as additive Gaussian white
noise N 2 R6 with zero mean and standard deviation
Q 2 R6,6. The resulting process model is:

˙

X =


ṗ

p̈

�
= f(X,U,N), N ⇠ N (0,Q),

=


ṗ

1
m

Q

l

p⇥ (p⇥ fRe

3

)� (ṗ · ṗ)p

�
+N. (8)

We obtain x

B
L

from Sections IV-A� IV-C and calculate a
numerical discrete time derivative for ẋ

B
L

. The measurement
model, with additive Gaussian white noise V 2 R6 with zero
mean and standard deviation S 2 R6,6, is:

Z =


x

B
L

ẋ

B
L

�
= g(X,U,V) , V ⇠ N (0,S),

=


R

>l p
l
�
R

>
ṗ�⌦⇥

�
R

>
p

��
�
+V. (9)

We use Eqs. 8 and 9 in a standard EKF implementation [23].
Note we also formulate the EKF in a coordinate-free manner.
While camera measurements are low-frequency, the EKF uses
the dynamic model to estimate the state at the higher IMU
measurement rate. We conduct a process update when a new
IMU measurement is received, using the most recent control
input and yaw measurement. When a new raw image is
received, we cache the current state estimate, the subsequent
IMU and Vicon measurements, and control inputs. After
x

B
L

, ˙xB
L

are computed, we conduct the measurement update
on the first state estimate cached and recompute the process
updates, accounting for image processing latency.

V. TRAJECTORY GENERATION

We plan trajectories for the system by optimizing a payload
trajectory x

L,des

2 R3. For dynamic feasibility, the trajectory
must be at least six-times differentiable and of class C5. From
Section II, the highest derivative to appear in the input is x(6)

L

,
motivating the cost functional:

x

L,des

= argmin

x

L

Z
t

m

0
kx(6)

L

k22 dt. (10)
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Fig. 5: Overview of experimental setup.

The Euler-Lagrange condition yields the condition:

x

(12)
L

= 0, (11)

whose solution is an 11th-order polynomial. Thus, optimal
payload trajectories take the form of piecewise-polynomials:

x

L,des

=

8
>>><

>>>:

x

L,des,1 =

P11
i=0 ci,0t

i t0  t  t1
x

L,des,2 =

P11
i=0 ci,1t

i t1 < t  t2
...

x

L,des,m

=

P11
i=0 ci,m�1ti t

m�1 < t  t
m

,

where T = {t0, ..., tm} is a pre-selected set of breaktimes and
x

L,des

is a vector function. Consider the decision vector:

c =

⇥
c0,0 c1,0 c2,0 ... c

N,m�1

⇤>
.

Eq. 10 is a positive-definite quadratic function with respect to
c. For dynamic feasibility, we impose continuity constraints:

x

(k)
L,des,j

(t
j

) = x

(k)
L,des,j+1(tj) 8j 2 [0, 5], k 2 [1,m-1]. (12)

To ensure the system begins and ends at hover, we impose:

x

(k)
L,des

(t
j

) = 0 8j 2 {0,m}, k 2 [1, 5]. (13)

Note that the flat derivatives in Eq. 13 correspond to states
p = �e

I
z

, R = I, ṗ = ⌦ = 0. Finally, we select way-
points x

L,j

for the trajectory to pass through and impose:

x

L,des

(t
j

) = x

L,j

8j 2 [0,m]. (14)

Eqs. 12–14 are linear with respect to c. Using Eq. 10 and
Eqs. 12–14, we formulate a Quadratic Program (QP) that can
be solved with commercial optimization software [8], [19].

There is a possibility that the optimized trajectory x

L,des

violates the cable-tautness assumptions of our system. From
Eq. 1, guaranteeing ẍ

L

·e
z

> �g is sufficient to ensure T > 0.
It has been shown that for any x

L,des

with breaktimes T , a
trajectory with the same coefficients but breaktimes ↵T tra-

verses the same path and has derivatives
x

(k)
L,des

↵

k

[19]. To ensure
cable-tautness, we first find the desired trajectory coefficients
by solving the QP with an initial T . We then find the trajectory
breaktimes by choosing ↵ such that ẍ

L

· e
z

> �g.

VI. EXPERIMENTAL RESULTS

This section presents experimental results that validate our
proposed system. A video of the experiments can be found at
https://youtu.be/LKss zhXShU.

(a) Payload angle over time

(b) ṗ
y

over time

Fig. 6: Circle tracking with T = 3.5 s at various l.

A. Platform

Fig. 5a pictures our experimental platform. We use an
AscTec Hummingbird with an onboard ODROID XU4 pro-
cessor6. The robot has a total mass of 835 g, the payload has
a mass of 88 g, and the cable length varies from 0.4� 0.7 m.

Our system architecture is shown in Fig. 5b. A base station
computer receives the quadrotor states from the Vicon system
at 100 Hz and broadcasts them over Wifi to the ODROID. The
payload is observed using a MLC200w Matrix-Vision7 Blue-
fox camera with a Sunex DSL215 fisheye lens. The ODROID
receives images from the camera via USB at 50 Hz and
orientation information from the IMU via serial connection
at 100 Hz. The innermost quadrotor attitude controller is run
onboard a low-level micro-controller on the robot. All other
software was implemented in C++/ROS on the ODROID, with
Gurobi8 as an optimization solver.

As suggested by [24], we calibrate the camera
using N = 4 in Eq. 6. We use control gains
k

x

= diag(2.9, 2.9, 6.5), k

v

= diag(1.3, 1.3, 4.5),
k

i

= diag(0.001, 0.001, 0.001), k
p

= 9, k
ṗ

= 7.5,

6www.hardkernel.com
7www.matrix-vision.com/home-en.html
8www.gurobi.com

TABLE II: Estimation error statistics for circle trajectories.

l Statistic T = 3.5 s T = 5 s T = 9 s
l = 40cm Ang. err. mean (deg) 1.60 1.53 1.39

Ang. std. dev. (deg) 0.74 0.90 0.55
ṗ err. mean (1/s) 0.11 0.098 0.074
ṗ std. dev. (1/s) 0.086 0.083 0.050

l = 50cm Ang. err. mean (deg) 1.32 0.86 1.18
Ang. std. dev. (deg) 0.68 0.38 0.77
ṗ err. mean (1/s) 0.15 0.081 1.12
ṗ std. dev. (1/s) 0.11 0.057 0.090

l = 70cm Ang. err. mean (deg) 1.14 1.48 0.73
Ang. std. dev. (deg) 0.67 0.77 0.44
ṗ err. mean (1/s) 0.10 0.088 0.051
ṗ std. dev. (1/s) 0.061 0.057 0.036
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Fig. 7: Snapshots of quadrotor moving through a slalom course.

k

R

= diag(1.4, 1.4, 0.4), k⌦ = diag(0.12, 0.12, 0.04). Here,
diag(·, ·, ·) specifies the matrix’s diagonal elements.

B. Robustness to Varying Parameters

First, we test our system by executing circular trajectories:

x

L,des

= [r cos(
2⇡t

T
) r sin(

2⇡t

T
) H]

>,

with cable lengths 40 cm, 50 cm, 70 cm and trajectory periods
T of 9 s, 5 s, and 3.5 s. All trajectories have constant
altitudes H , r = 1.5 m, and are executed for 4T s. Across
experiments, the payload path remains constant, while the
payload and quadrotor orientations and velocities, as well as
the quadrotor path, vary. Payload detection and control both
become more difficult as T decreases. As l increases, the
payload becomes harder to detect, but easier to control. Thus,
we can gain an understanding of system robustness through
testing combinations of l and T .

Let ·
x

, ·
y

, ·
z

denote vector components along the inertial
frame axes and define:

�
x

= tan

-1
✓

p

y

-p
z

◆
, �

y

= - tan-1
✓

p

x

-p
z

◆
.

Fig. 1 pictures snapshots from an experiment. Fig. 6a-6b
show Vicon measurements and estimated states during one
trajectory period. For clarity, we plot only y components,
however, performance in x is similar. At all cable lengths,
the estimated state closely tracks the Vicon measurements.

Table II reports estimation errors. Let ·
v

denote Vicon
measurements and ·

e

denote estimates. Angular errors are:

|�
x,v

� �
x,e

|+ |�
y,v

� �
y,e

|
2

,

while ṗ errors are computed with:

k ˙p
v

� ˙

p

e

k2.

We observe an average orientation error of less than 2

o across
all experiments, with a standard deviation of less than 1

o.
Similarly, the average ṗ error is less than 0.11 1/s, with a
standard deviation of less than 0.090 1/s in all experiments.

Fig. 8 illustrates tracking results for all experiments. Control
gains were tuned with l = 50 cm; however, tracking per-
formance remains consistent across all cable lengths. Errors
in payload position and velocity control increase for faster
trajectories, however, payload attitude tracking performance
remains relatively constant.

C. Trajectory Tracking Through Slalom Course

Next, we execute trajectories through a slalom course of
four equally spaced, collinear traffic cones, with l = 50 cm.
The trajectory is constrained to pass through constant-altitude
waypoints on alternating sides of the cones. We choose ↵s
such that trajectory durations are t

m

= 1.5 s, 1 s, 0.9 s (i.e.
slow, medium, and fast, respectively). In all cases, the cable re-
mains taut. From Eq. 11, all trajectories optimal with respect to
Eq. 10 are piecewise-polynomials, making these experiments
reflective of optimal slung-load maneuvers.

Fig. 9 illustrates desired payload trajectories with corre-
sponding actual payload and quadrotor trajectories. Note the
desired path is common across experiments, however, the
payload angle significantly increases with trajectory speed.
Table III lists the maximum payload velocities and angles.
Notably, the payload reaches an angle of 53o and over 3 m/s.
Fig. 7 pictures snapshots from the fast trajectory.

Fig. 10 illustrates tracking and estimation performance
along each trajectory. Estimation errors remain small across all
trajectories, but tracking error increases for faster trajectories.
In particular, v

L,z

errors increase as it becomes difficult to
keep the fast-moving payload at a constant altitude.

Table III also lists the percent reduction in average error of
our proposed system compared to open-loop control [11]. We
compare each slalom trajectory to a trajectory with comparable
maximum payload velocity and angle optimized using the
same QP formulation. While the compared trajectories are not
identical, we can still gain an understanding of our proposed
system’s relative performance. We calculate error reduction as
ē

open

�ē

closed

ē

open

, where ē denotes the average error in payload
position, kx

L,des

� x

L

k2. In both the slow trajectory, where
the payload remains close to the equilibrium position, and the
fast trajectory, where the fast-moving payload becomes hard
to track, over half the tracking error is eliminated.

Results in Sections VI-B-VI-C validate our system’s capa-
bility to execute aggressive payload maneuvers at various cable
lengths. We observe good performance in estimation across
all experiments. The payload position tracking is better at low
speeds. This is due to more drastic payload state changes in
between successive camera measurements during fast trajec-
tories. Further, as the desired payload higher-derivatives in

TABLE III: Statistics of slalom trajectories.

Speed Max. kẋ
L

k2 Max. � Err. Reduction (%)
(m/s) (deg) (Open-Loop Max. kẋ

L

k2,�)
Slow 1.04 9.94 67 (1.05 m/s, 6.35o)

Medium 2.14 32.88 61 (2.08 m/s, 32.00o)
Fast 3.03 53.77 54 (2.87 m/s, 39.00o)
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(a) Payload position, T = 9 s. (b) Payload position, T = 7 s. (c) Payload position, T = 3.5 s.

(d) Payload velocity, T = 9 s. (e) Payload velocity, T = 7 s. (f) Payload velocity, T = 3.5 s.

(g) Payload angle, T = 9 s. (h) Payload angle, T = 7 s. (i) Payload angle, T = 3.5 s.

(j) ṗ
y

, T = 9 s. (k) ṗ
y

, T = 7 s. (l) ṗ
y

, T = 3.5 s.

Fig. 8: Tracking of circle trajectories at various cable lengths and trajectory period times.

the controller’s feedforward terms ˙R
c

, ˙⌦
c

, ṗ
c

increase, the
system is more affected by unmodeled disturbances. However,
even for fast trajectories, our system still demonstrates stable
tracking and offers significant improvements over previous
open-loop payload controllers. In short, we execute aggressive
payload maneuvers using noisy, low-frequency visual feedback
on a low-cost processor, representing a significant step towards
real-world slung-load manipulation.

VII. CONCLUSIONS

In this work, we present a system for control, estima-
tion, and trajectory generation of a quadrotor with a cable-
suspended payload. With this method, we demonstrate closed-
loop control of agile payload trajectories in the full three-
dimensional workspace. We successfully execute our system
on an onboard processor and demonstrate robust tracking of
circular and piecewise-polynomial trajectories, while control-
ling payload angles of up to 53

o. The success of our approach
suggests a natural direction for future work where vision-based
state estimators for the quadrotor can be integrated with the
proposed payload state estimator.
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